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Abstract. In this paper, we introduce a new technique into the old topic of Darboux
transformations. In doing so, new solutions corresponding tathequation and a localized
soliton solution of thepsii equation are found explicitly.

1. Introduction

In [1] we considered the constraint of the Kadomtsev—Petviashsr) ¢quation
U, = 38;114),); — Uypx — Bu, (1.2)

by the constraint

m

u(x, y, 1) = =2y pj(x,y,0;(x, y, 1) (1.2)
j=1

and reduction

pi+tqi=0 Jj=12....m (1.3)
where* denotes the complex conjugate apdsatisfy the following equations:
ipjy = Pixx + 2( pkl?;f)l?j (1.4)
k=1
pjt = —4{p,fxxx +3<2pkp7§>p_,~x +3<Zpkxp7§>pj} i=12....m. (15
k=1 k=1

If we solve this two (14 1)-dimensional evolution equation, then from (1.2) and (1.3),
we get some solutions of the {21)-dimensional KP equation. Equations (1.4) and (1.5)
are associated to the Lax pair (1.6), (1.7) and (1.6), (1.8), respectively,

or = OJ + M)y (1.6)
ip, = (A2J 4+ 1M + My)g 1.7)
—30 = (\3IM + AM1 + M2)g (1.8)

wherea is a parameterg is a (n + 1)-component vectop = (¢1, ..., @mr1), J, M, M1
are(m + 1) x (m + 1) matrices, and

J = diag1, 0,0, ..., 0)
M = (M;) M; =0 M;;=0 i#j i#1 j#1
Myj1 = p; Mii11=qi ij=1,2,...,m
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where My = oM, — M?, M, = M, + MM, — M,\M — 2M® and ¢ =
diag1, -1, -1,...,—1) as we know that the Darboux transformati@T) is a powerful
tool for finding the solution of the soliton equation, but we have to considepthender
the reduction individually.

In section 2, we deal with thet of the equations (1.6)—(1.8) under the reduction (1.3);
the main technique is to introduce a bilinear form and rewrite the usual an alternative
form which is easy to use for computation. This is used to find some solutions @Pthe
equation in section 3. In section 4, we consider another {3-dimensional equation [2],

Ayy — Ay + 2(bc), =0 dyy + dyx — 2(bc), =0
iby + byy + 2b(d; —a,) =0 —ie + ey +2e(di —a) =0

wherea,, d, are real functions anéd = ¢*, this equation is one member of the Davey—
Stewartson §s) hierarchy, and it is equivalent to thesii equation (we prove it in the
appendix). By the constraint

(1.9)

b
wy = pq’ w = <CCZ d) p' = (p1. p2) q" = (q1, 92) (1.10)
and, reduction
pi + q;,k -0 (1.11)
where p, g satisfy the equations

1 0
py =03ps + Op 4, =q'os—q' Q 0. =[pq". 03] 03 = (0 _1>
(1.12)
c T T T
—ipi = pxx — 2wy p i, =g, —29 wy. (1.13)

If we can solve equations (1.12) and (1.13), then from— pg", one gets some solutions
of equation (1.9).

The Lax pair for the equations (1.12) and (1.13) are (1.14), (1.15) and (1.14), (1.16),
respectively.

§ 0 p

f=Uf T =(f1 fo. f2) U=(0 & P2>=<;T g) (1.14)
g1 g2 O
_ _ (o0 +Q o3p
fy=Usf Uy = < 470 0 ) (1.15)
2 T
ifi=Usf  Up= (s e ‘quip”*) (1.16)

where¢ is a spectral parameter.

We note that by the transformatiofj;1 = ¥,€* (! = j + 1, mod3, —& = A, the
equation (1.14) is transformed to the type of the equation (1.6) with- 2, such that
one can get theT for the equations (1.14)—(1.16) similarly, and we can use it to find the
localized soliton solutions of the equation (1.9).

2. The DT of the spectral problem (1.6)

It is well known [4] that by theDT
o =0-9 S=HAH? A =diagy, ..., Ans1) (2.2)
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where H is a non-singular matrix solution of the equations (1.6)

H,=JHA+ MH. (2.2)
Equation (2.1) maps (1.6) to the same types of equation

o, =2 + My (2.3)
and

M=M+JS—SI=M+[JS]-S;=M'S—SM. (2.4)

The main problem is to seleet and H such that the condition (1.3})1’. +4q;7 =0 is
invariant after theoT (2.1).
Imposing the condition; = u, A; = —p*, j = 2,...,m + 1, we denote byy, ¢,

¢ the solutions of (1.6) with spectral paramelgrr = p, andr = —u*, respectively,
and we take
H=H;=¢Y. (2.5)
Since
—(uJ + M @D — (—p + M)pV (2.6)
by using the condition (1.3), from (2.6), it yields
()M, = (@) T(MT + M)e® =0 (2.7)

whereM* is a Hermite matrix of\/.
This means that we can také” to satisfy the condition

m+1

From equation (2.8), one gets the solutiph*,
oV =AY (2.9)
where Aj? is the cofactor ofp} in the determinant and satisfies

m+1

> gl Ak =5 (2.10)
j=1
Since then,
m+1
A = detH = Z Do = (oD, ¢®). (2.11)

It is very important that the determinant is positive definite.
We introduce the bilinear form

[1// (1)] _ (w (0 ) [(p(l) (p(l)] _ (‘P(l)» ‘/7(1)) .
’ A+ ’ w+ p
From equation (2.1), the matri& can be expressed as follows:

S;; :( o AT — Z (k)A(J)> (2.13)

By using (2.10),S;; can be rewritten as follows:

(2.12)

* % 1 1)x*
. (A uHePel (1 + 1MoV
Su= o P, TR

n i#j. (2.14)
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We define
@ .
1) = ! i=12....,m+1. 2.15
vl =5 (2.15)

By using (2.14), from (2.1) we have

1 m+1
vifl} = e {Mﬁi - ,; Sijlﬁj}
gy BT,
’ (A4 pu9)A (2.16)
‘ wi [wv go(l)]
o o, ]
T @]
We define
pifl} = p.; gi{l} = q_; . (2.17)
From equation (2.4), it yields
[EABEAE @ (D
_ _ 1 ¥ _ o 22
Pj{l}—Pj'l'Slj—Pj"'W CIj{l}—Pj—Sjl—Cﬁ—W- (2.18)
It is easy to see that
pi{l} +4;{1} =0.
The iteration of thiT gives
I/fi [I/f’ (pl] e [I/f’ (pN]
gi et el - e e
N N: i N: N
viN) = i [¢ ,fﬂi(N) [o", "] (2.19)
pi{N} = p; + dyg}* gi{N} = q; — d ¢}" (2.20)

where¢' is a solution of (1.6) withh. = ul, [, ¢'] = &";‘l’f) ¢ 9" = fﬂfj) A(N) =

det(¢’, ¢/1),i,j =1,..., N andd; are defined by expansion of the determinants.

3. Some solutions of thexp equation

The Lax pair (1.6)—(1.8), and consequently the compatibility condition, have the same
Darboux covariance properties as (1.6) itself; equations (2.19) and (2.20) constitute the
iteratedDTs, wheregp’/ are the solution of Lax pair (1.6)—(1.8), we shall use it to generate
the solutions of (1.4) and (1.5), which then give the solution ofdih@quation from (1.2).

First of all we takem = 1. It is easy to see thai; = —€“—2® js a solution of the
equations (1.4) and (1.5), we ppt as our ‘seed’ into (1.6)—(1.8), and taking= 2+ i we
find

/ €2 (1—1iez €2x (1+i)x+2(1—i)y—(4+32i)t
=|e1— ———— +eat — Sy — | ’
% [el 124241 7% " 6x12” T 12+ 24|}

) (3.2)
(1—1De €2x :|eX+(2—i)y—(4+12i)z

/
g t — —
¢2 [el el = e oY T 124 24
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satisfy the equations (1.6)—(1.8) with the coefficiepis= —€* =20 wheree, e, are
constants.
For simplicity, we takezy = e; =1

‘P/l — [(3%3 + a) _ i(Tls + b)]e(l+i)x+2(l—i)_\'—(4+32i)t

(p/z — (a _ bi)e¥+(2—i)y—(4+12i)l (32)
AW 2 2
[¢". 1+ 2[a® + b + (55 +a)" + (45 +b)] = 34 3.3)
where
a=1+1—Fy+ 5x b=3y+ fox. (3.4)
We get a new solution of the equation (1.4) and (1.5) with= 1.
pi(l) = (-1 + 4‘”2”) gl-y=20 (3.5)

The new solution of th&p equation reads
8a(g5+a) +8(5+b) | [(3+a) + (f+0) ]l + 07
A + A2

u = —2]7117; =-2{1-

(3.6)

whereu is a rational function. Figure 1 shows%u(x, v, 0), whent — oo, u — 1, which
is different from the lump solutions.

Next we takem = 2, andp; = €2, p, = 0 as our ‘seed’ the solution of (1.6)—(1.8)
reads
(pi — etSJriefiy{e)\ava + ef)uayfiv}
§0/2 — _e5+i9+iy{e)\ay+iv—i0 + e—Acty—iv+i9} (37)
p3=1

Figure 1.
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where
)\‘2
E = ——2 y
A 3
8=§x+kay—2)»t

v = ax — (42%a — 8a)t

22 (3.8)
a= 1—Z A real andjA| < 2

A
6 =tant
2a

1 1
[0l 0] = X{ezfs[z cosh2.ay +cos + cog2v + 6)] + 1} = A

We get the new solution of the equations (1.4) and (1.5) with: 2,

pi{l} = p1+
@

_ {1 20e?[cosh cosh 2ay — isind sinh 2.ay + cog2v + 0)] } o2
N A

(3.9)
01o3"
p2fl} = p2 + [0t o1
_ 2)xeT<7¥(cosv cosh 2.ay — isinv sinh 2uay)
N A
u = 2(|p2{ 1} + | pa{1}?)
4)2e? 4)2e® sir? 6 sink? 21
= 2{ Az (cog v costt 2hay + sir? v sint? 2xay) + S Azsm e
+[1_ 2, cost cosh ZZzy -|-cos(2v+9)]]2} (3.10)

is a new solution of th&p equation to our knowledge.

4. The localized soliton solution of the equation (1.9)

The bt for (1.14)—(1.16) can be found similarly, for example, the solutions of the
equation (1.12) and (1.13p4[2], p2[2] can be expressed as follows:

L 019l 07+ 9iei[e". 0] — o193 1%, 9] — eivslet o7}
1 1xr,2 .2 22*11A12*21 2 1xkr 1 2 (4'1)
. lp2903"[07, 071 + 03037907, 0] — 2057 [07, 0™ — V3037 [0™, 971}
p2f2} = p2+ A
A =Y 'll¢?, %] — [0%, 9?1197 '] (4.2)
whereg?, ¢? are solutions of the equation (1.14)—(1.16) Witk= 1, & = uo, respectively.
To solve the equation

w{2} = p{2q" {2} q*{2}+ p{2} =0 (4.3)

one gets the solution of the equation (1.9), but we can get it in an alternative way.

pu{2Zt=p1
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We write theS matrix as follows:

T E
S:(F h) (4.4)

whereT is a 2x 2 matrix, E and F are 1x 2 and 2x 1 matrices, respectively, aridis a
1 x 1 matrix. Then

pli=p+E  q'{l=q"—F. (4.5)
Now we are interested in finding the solutianof the equation (1.9). After thet
w{l), = p{l}y{l} =w — pF — EF + Eq" . (4.6)

From equation (2.4)
¢ (T EY\ _ 0 p+E\(T E\ (T E\(O0 p
TTA\F n) T \¢-F 0 F h F h)\g" O

T.=pF+EF —E,. 4.7

it yields

Combining (4.3) and (4.4), we have

will=w—T
or
. |l|2 . 1 1«
all=a+pj— A ply=c (L =b— A2
[ot, 9] (o1, 1] 48
|(p12 ()
dil}=d+p"— 2.
[0t @]

By iterations we get

o etPle? 0% + 1921P[eh o' — o192 (92, 0 — eier et ¢?1)
a{2) =a+pi+ps— : e =

A
(0312102, 0] + 19212[0", 0] — 0303 (0% ¢ — V203 [0, 9?1}
A2 =d + ut + uk—
{2} tugt+ 1o A
12 = b2y = b — 212107 L E e et 01 — eie e 0] — wler et 7))
A
(4.9)
A =[¢" o'¢? 0% — [¢*, ¢°ll¢%, @] . (4.10)

Now we begin with the ‘seedp™ = (0,0), g7 = (0, 0), the solutiong?', ¢? of the
equation (1.14)—(1.16) reads

(0% — cley_l(x-k—y)-&-iu_fl ij- — dlep.z(x+y)+iu,gt
(p% — cZGm(xfyHiuft ¢§ — dzeﬂz(xiv)Jriu%t (4.12)

93 = c3 03 = ds



4194 Li Yi-Shen

whereuy = & +ié&, u2 = n1+in2. For simplicity, we take:;, d;, (j = 1, 2, 3) to be real,
then

1

[0, 01 = —(c%ez‘31 + cgez‘32 + cg)
28
(02, 07] = o 26+ a3 4 d wi)
[0% o'T" = [¢". ¢°]
GCEEN) j (&2 — )i (cxds T+ pdp@ M  cody)

where

81 =8&(x+y) — 268t 82 =&1(x — y) — 25180t

=&K& +y)+E -1 ea=&Kx—y) +E —ED 4.13)

p1=n1(x —y) — 2nimat p2 = ni(x —y) — 2mnat

v1 = n2(x + ) + (i — nd)t v2 = 12(x — y) + (s — nd)t .

Substituting (4.9), (4.10) into (4.6), we get the solution of equation (1.9). Now we consider
a special case

e2=d=0 c=d=y3 ca=d=y =2 H=m=mp=1
(4.14)
b{2} = 4@+ /[cosh3x + y — 61) + 3 coshx + 3y — 21)]

4.1
a{2} =2 —i—4cosh3x, — 6r)/[cosh(3x + y — 6r) + 3coshx + 3y — 2¢)] (4.15)

whereb{2} is a localized soliton solution (figure 2 shO\&lH){ZH with ¢+ = 0). This localized
soliton may be similar to the solution in [3].

0.75
0.5

0.25
0 -2

Figure 2.
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Appendix

In [3], the authors deduced thmsi equations as follows:
iq{ — quu + Gvv + (_(puu + Qovv)q =0
—iry — 1y + 1o + (=@ + ¢u)g =0 (Al)
2(puv = —qr.

By the transformationr = (u + v)/2, y = (v — u)/2, equation (A.1) becomes
iqt + gxy + (nyq =0
—iry + 1y +r =0 (A.2)
2@ur = @yy) = —qr.

Now we assume that the functiapn, is integrated with respect to or y and the

functionay,, d,, are integrated with respect &g and all these constants of integration are
chosen to be zero,

dy —ay, = —(ay +dy) ay —ay —dy —d, = —4bc. (A.3)
Comparing the last two equations of (1.9) with the first two equations of (A.2), we take
Ory = 2(dy — ay) or ¢y, =—2(d —a) Oy = 2(dy —ay) . (A.4)
Using equation (A.3), we have
$ry = —2(d, +ay) or ¢r = —2(d +a) Prx = —2(d; +ay) (A.5)
which yields
30 —9yy) = (=dy —a, —dy +a,) = —4bc. (A.6)

By using (A.4) and (A.6), we leb = g /2, ¢ = 1/2; equation (1.9) is reduced to (A.2).
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